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by

Robert Sherman Detrick, Jr.

Submitted to the Woods Hole Oceanographic Institution-Massachusetts
Institute of Technology Joint Program in Oceanography on May 5, 1978
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy.

ABSTRACT

This thesis consists of three papers examining problems related to
the crustal structure, isostasy and subsidence history of aseismic ridges
and mid-plate island chains. Analysis of gravity and bathymetry data
across the Ninetyeast and eastern Walvis Ridges indicates these features
are locally compensated by an overthickening of the oceanic crust. Maxi-
mum crustal thicknesses are 15-30 km. The western Walvis Ridge is also
compensated by crustal thickening; however, the isostasy of this part of
the ridge is best explained by a plate model of compensation with elastic
plate thicknesses of 5-8 km. These results are consistent with the forma-
tion of the Ninetyeast and Walvis Ridges near spreading centers on young
lithosphere with flexural rigidities at least an order of magnitude less
than those typically determined from flexural studies in older parts of
the ocean basins. As the lithosphere cools and thickens, its rigidity
increases, explaining the differences in isostasy between aseismic ridges
and mid-plate island chains. The long-term subsidence of aseismic ridges
and island/seamount chains can also be explained entirely by lithospheric
cooling. Aseismic ridges form near ridge crests and subside at nearly
the same rate as normal oceanic crust. Mid-plate island chains subside
at slower rates because they are built on older crust. However, some
island chains have subsided faster than expected based on the age of the
surrounding sea floor, probably because of lithospheric thinning over mid-
plate hot spots, like Hawaii. This lithospheric thinning model has major
implications both for lithospheric and mantle convection studies as well
as the origin of continental rift systems.

Thesis Supervisor: G. M. Purdy
Title: Assistant Scientist
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INTRODUCTION AND OVERVILEW
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The cooling and thickening of oceanic lithosphere as it ages can
explain much of the regional bathymetry of the ocean basins. However,
this pattern of increasing depth with age is interrupted by seamount
chains, aseismic ridges and various plateau~like features that stand
several kilometers shallower than the surrounding sea floor (Figure 1).
A few of these features, such as Seychelles, Orphan Knoll and Rockall
Plateau, are clearly continental fragments isolated by rifting and sea
floor spreading; however, most of these highland areas appear to be
oceanic and volcanic in origin. While various models have been pro-
posed to explain the origin of island/seamount chains and aseismic
ridges, there is increasing evidence that many of these features have
formed by the passage of the lithosphere over a hot spot or mantle plume
(Wilson, 1963; Morgan, 1972).

The hot spot model postulates that there are deep volcanic sources
in the mantle which create rising plumes of asthenospheric material.
These plumes may be fixed relative to the deep mantle (Morgan, 1972), or
they may move relative to one another at rates on the order of that ob-
served for lithospheric plates (Molnar and Atwater, 1973). Material
associated with these rising plumes penetrates the lithosphere, resulting
in the formation of a volcanic center that remains nearly stationary
relative to the moving lithosphere. An aseismic ridge is built if the
volcanism is continuous and an island or seamount chain if the volcanism
is discontinuous. Generally aseismic ridges form from hot spots located
on or near spreading centers, while seamount chains form from hot spots

located off-ridge (Wilson, 1973).




FIGURE 1

Physiographic map of the World's Oceans by B. C. Heezen and
M. Tharp showing location of aseismic ridges and mid-plate

island chains discussed in this thesis.

15
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This thesis is a collection of three papers examining problems re-
lated to the crustal structure, isostasy and subsidence history of aseis-
mic ridges and mid-plate island chains. The basic objectives of this
research are (a) to gain insight into the mechanical properties of the
lithosphere by studying the manner in which lithosphere of different ages
responds to these volcanic loads; (b) to examine the effect of hot spots
on the thermal structure of the lithosphere by studying the subsidence
history of aseismic ridges and mid-plate island chains.

We find that the isostasy of aseismic ridges require plate rigidities
near spreading centers to be at least an order of magnitude less than
that typically determined for old (>80 m.y.) oceanic lithosphere. The
differences in isostasy between aseismic ridges and mid-plate island
chains can, thus, be largely explained by the increasing rigidity of the
lithosphere as it cools and thickens. The long-term subsidence of aseis-
mic ridges and island/seamount chains can also be explained entirely by
lithospheric cooling; there is no evidence for significant viscoelastic
behavior of oceanic lithosphere. Aseismic ridges generally form near
ridge crests; consequently, they subside at nearly the same rate as
normal oceanic crust. Mid-plate island chains subside at slower rates
because they are built on older crust. However, some mid-plate island
chains subside faster than expected based on the age of the surrounding
sea floor, probably because of lithospheric thinning over mid-plate hot

spots.

a
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Plate tectonics is based on a relatively simple mechanical model
for the outer layers of the Earth in which a strong, rigid layver (litho-
sphere) overlies a weak layer (asthenosphere). The existence of the
asthenosphere can be inferred from the gravitational compensation of
surface loads. This compensation must be achieved by the lateral flow
of material in a weak asthenospheric layer. A rigid lithosphere
is required in order to support large surface mass inequalities, like
mountain ranges, for many millions of years.

Studies of the response of the lithosphere to different surface
loads have provided much information on the structure, thickness and
rheology of the lithosphere. In the oceans these studies have been made
for seamounts (Watts et al., 1975), seamount chains (Walcott, 1970a;
Watts and Cochran, 1974) and at deep sea trenches (Hanks, 1971; Watts
and Talwani, 1974; Parsons and Molnar, 1976). In these situations the
oceanic lithosphere appears to respond to long-~term (>106 yrs) surface
loads as would a thin elastic plate overlying a weak fluid layer. The
equilibrium vertical displacement, w, of the lithosphere under a load P
is

DV'w + Apgw = P (Walcott, 1970b)
where D is the flexural rigidity of the lithosphere and Ap is the dif-
ference in density between the displaced fluid (asthenosphere) and the
material above the plate infilling the deflection (water, sediments,
basalt,etc.). The flexural rigidity of an elastic plate is a measure
of its resistance to bending and is principally determined by, T, the
plate thickness (Walcott, 1970b):

.

D = T3(1-5)
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where E is Young's modulus and ¢ is Poisson's ratio. From these studies,
the flexural rigidity of oceanic lithosphere has been estimated to fall

in the range 5 x 1029 to l031 dyn-cm. These rigidities correspond to
effective elastic plate thicknesses of 18 to 48 km. These thicknesses

are much less than the seismically determined thickness of the lithosphere.
They represent, in essence, that part of the lithosphere that responds
elastically to long-term (>106 yrs) surface loads.

Most of these flexural determinations have, however, been limited to
older parts (>80 my) of the oceanic lithosphere. There is increasing
evidence that the elastic properties of the lithosphere are temperature
dependent. For example, McKenzie and Bowin (1976) have treated the
irregularities of normal sea floor topography as a load created at a
spreading center and have estimated a best fitting effective elastic
plate thickness of ~10 km. This is considerably less than that typically
determined for loads on old oceanic crust. Watts (in pre:s) has argued
that at temperatures above 450° + 150° C stresses in the lithosphere are
relieved by plastic flow. Thus the hot, young lithosphere near mid-ocean
ridges should be much weaker than the thicker and colder lithosphere in
older parts of the ocean basins.

This should have a profound effect on the isostasy of aseismic ridges,
which are generally believed to form at or near spreading centers. By
studying the isostasy of aseismic ridges we can obtain information on
the mechanical properties of young oceanic lithosphere. The isostasy
of aseismic ridges is, however, still poorly known. Refraction data from
aseismic ridges have been used to argue both for (Bott et al., 1971;
Goslin and Sibuet, 1975) and against (Francis and Raitt, 1967) crustal

thickening, and even though there is general agreement that aseismic
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ridges are compensated at depth, several different isostatic models
(Airy, Pratt or flexure) have been used to describe the manner in which
these ridges are supported (compare Bott et al., 1971, with Bowin, 1973,
and Kogan, 1976).

[n Chapter 2 we have investigated the crustal structure of two
prominent aseismic ridges, the Ninetyeast and Walvis Ridges, in order
to place better constraints on their deep crustal structure and isostasy.
In this study we have used linear transfer function techniques of
analyzing gravity and bathymetry data similar to those previously used
by McKenzie and Bowin (1976). This relatively new method of analyzing
marine gravity data treats the free-air gravity and bathymetry data as
time series. Using cross-spectral techniques a transfer function (or
admittance) between gravity and bathymetry is computed, and this function
is used to examine the state of isostasy of features along the profiles
(see Appendix A). The advantage of these techniques is that they use
observational data and are not based on any particular model of isostasy.
The transfer functions can, however, be interpreted in terms of different
isostatic models (McKenzie and Bowin, 1976).

From this analysis of gravity and bathymetry across the Ninetyeast
and Walvis Ridges we draw the following conclusions:

1) The Ninetyeast Ridge and the eastern Walvis Ridge are

locally compensated by an overthickening of the oceanic crust.

Maximum crustal thicknesses beneath these ridges are estimated

to be 15-30 km. The western Walvis Ridge is also compensated

by crustal thickening; however, this part of the ridge is

regionally supported by a lithosphere with an effective elastic
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plate thickness of 5-8 km. This compares with elastic plate
thicknesses of 20-30 km typically determined around Hawaii
(Walcott, 1970; Watts and Cochran, 1974).

2) These results are consistent with the formation of the
Ninetyeast and Walvis Ridges near spreading centers on litho-
sphere that is thin and weak with little or no elastic strength.
The differences in isostasy and morphology between the eastern
and western Walvis Ridge are attributed to an off-axis shift
(relative to the Mid-Atlantic Ridge) of the "hot-spot" forming
the Walvis Ridge beginning ~80 mybp.

3) Comparison of the wavelength and amplitude of gravity
anomalies across aseismic ridges and mid-plate island chains
indicate that the rigidity of the lithosphere increases by

about an order of magnitude from ~1028 to 1029 dyn-cm near

ridge crests to ~lO29 to 1030 dyn-cm for lithosphere 90-100 my
old. This increased rigidity is attributed entirely to the

cooling and thickening of the lithosphere as it becomes older.

The long-term subsidence of oceanic islands has been known since the
time of Darwin. Recent Deep Sea Drilling results from a number of dif-
ferent aseismic ridges indicate that these features have also experienced
a long history of subsidence (Pimm et al., 1974; Vincent et al., 1974;
Thiede, 1977). The simplest explanation for the widespread occurrence
of atolls and guyots and the subsidence of aseismic ridges is that these

features ride passively atop the underlying lithosphere and subside as




™

22
this lithosphere cools and thickens. In Chapter 3 the geological evidence
for aseismic ridge subsidence is reviewed in the context of this simple
model. From this study we have concluded:

1) At least five major aseismic ridges--the Ninetyeast Ridge,
the Rio Grande Rise, the Walvis Ridge, the Chagos-Laccadive Ridge
and the southeast Mascarene Plateau--have formed at or close

to sea level and have since subsided at rates comparable to

that of normal oceanic crust. Other aseismic ridges such as

the Iceland-Faeroe Ridge and Broken Ridge have probably under-
gone a similar but more complicated subsidence history.

2) This long-term subsidence of aseismic ridges can be ex-
plained entirely by the cooling and thickening of the litho-
spheric plate on which these ridges are built. Since most
aseismic ridges appear to have formed on very young lithosphere
near spreading centers, their rates of subsidence are comparable

to that of normal oceanic crust.

The long-term subsidence of island and seamount chains formed on
older crust away from spreading centers should also be attributable to
the cooling and thickening of the underlying lithosphere. That is,
after an initial, relatively short period of rapid isostatic adjustments,
these islands should subside at the same rate as the surrounding sea
floor. The subsidence of western Pacific atolls and guyots has been
well documented (Menard and Ladd, 1963); however, geological evidence

from drilling on several of these atolls indicates their long-term
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subsidence is much greater than this model would predict. In Chapter 4
these data are presented and several possible explanations for this excess
subgidence are discussed. We conclude:

1) This excess subsidence cannot be explained by isostatic

adjustments either to the weight of the volcano or the weight

of the coral reef cap. It also cannot be explained by visco-

elastic flexure of the underlying lithosphere.

2) This excess subsidence 1is apparently related to island forma-

tion atop areas of anomalously shallow zea floor, such as the

Hawaiian swell, associated with mid-plate hot spots. As this

sea floor returns to its normal depth, the islands subside an

extra amount equal to the original height of the swell.

3) The Hawaiian swell 1s caused by lithospheric thinning over

the Hawaiian hot spot. Since the lithosphere is denser than

the asthenosphere, this thinning results in broad regional

isostatic uplift. As the lithosphere moves away from the hot

spot, 1t cools and thickens, and the swell disappears. The

subsidence of the Hawaiian swell and a number of western Pacific

atolls is in quantitative agreement with this model. The model

also satisfies gravity data over the Hawaiian swell which appear

to require compensation in the lower half of the lithosphere.
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These three studies demonstrate that the thermal and mechanical
properties of the lithosphere largely determine the state of isostasv and
subsidence history of both aseismic rldges and mid-plate [sland chains.
Additional studies of how lithosphere of various ages responds to these
and other volcanic loads can provide new Insight into the thermal and
mechanical evolution of the lithosphere. Perhaps the most exciting re-
sult of this work is the evidence found for lithospheric thinning over
the Hawaiian hot spot. This model, if correct, has major implications
both for lithospheric and mantle convection studies as well as the origin
of continental rift systems. It has also pointed out the need for addi-
tional geophysical data on the origin of hot-spot related swells both in
the oceans (Hawaii, Cook~Austral, Iceland) and on the continents (East
African rifts, Rhine graben, Lake Baikal). Surface wave studies and the
analysis of long wavelength free-air gravity and geoidal height anomalies
probably offer the best hope of resolving the deep lithospheric siructure

asgociated with these features.
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ABSTRACT

Cross-spectral estimation techniques have been used to analyze the
relationship between gravity and bathymetry on 26 profiles across the
Walvis and Ninetyeast Ridges. The resulting filters or transfer functions
have been used to study the state of isostasy at these ridges. Transfer
functions for the eastern Walvis Ridge and the Ninetyeast Ridge profiles
can be best explained by an Airy-type thickening of the crust beneath
these ridges. The crustal thicknesses required are in the range 15 to
25 km, in good agreement with available seismic refraction data. The
transfer function for the western Walvis Ridge can be best explained by
a flexure model in which the oceanic lithosphere is treated as a thin
elastic plate overlying a weak fluid. The elastic plate thicknesses
required are 5 to 8 km. These plate thicknesses are substantially less
than those typically determined from flexural studies of loads on older
crust, but are similar to estimates determined for sea floor topography
at mid-ocean ridges. These observations are consistent with the forma-
tion of aseismic ridges near spreading centers on lithosphere that is
young, thin and relatively weak. The differences in isostasy between
the eastern and western Walvis Ridge are attributed to an off-axis shift
relative to the South Atlantic spreading center of the "hot spot" forming
the Walvis Ridge about 80 m.y.B.P. These observations suggest that the
isostatic parameters determined for these aseismic ridges were ''frozen
in'" at the time of their formation at or near a spreading center and

have not significantly changed through time.
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INTRODUCTION

Scattered throughout the ocean basins are various ridge and plateau-
like features that stand 2-3 km shallower than the surrounding sea floor.
Some of these features such as Jan Mayen Ridge, Seychelles and Rockall
Plateau are clearly continental in structure and probably were isolated
by the processes of rifting and sea floor spreading. More difficult to
explain are features such as the Ninetyeast Ridge, the Walvis Ridge or
the Rio Grande Rise, which are composed mainly of basaltic (volcanic)
rocks. These ridges, which are noticeably free of earthquake activity,
have been called aseismic ridges (Laughton et al., 1970). While various
models have been proposed for the origin of aseismic ridges, there is
increasing evidence that many aseismic ridges have formed from "hot spots"
centered on or near a mid-ocean ridge (Wilson, 1963; Morgan, 1971).

Deep Sea Drilling results from aseismic ridges have confirmed their
volcanic nature and have demonstrated that basement ages along many
aseismic ridges vary systematically along their length and are approximately
the same as the surrounding sea floor (von der Borch, C. C., Sclater, J. G.,
et al., 1974; Davies, T. A., Luyendyk, B. P., 1974; Perch-Nielson, K.,
Supko, P. R., et al., 1975; Bolli, H. M., Ryan, W. B. F., et al., 1975).
Sediments recovered from aseismic ridges indicate they have experienced
a long history of subsidence. The oldest sediments indicate shallow water,
even subaerial conditions, followed by progressively deeper water and more
open marine depositional environments (Pimm et al., 1974; Vincent et al.,
1974; Thiede, 1977). The rates of subsidence are similar to that of

normal oceanic crust (Detrick et al., 1977).




FIGURE 1

Summary of published seismic refraction data from aseismic
ridges. Also shown for reference is a typical oceanic crustal
section and an interpretation of the crustal structure be-
neath Iceland. Velocities are in km/sec; parentheses indicate

unreversed velocities; asterisks indicate assumed velocities.
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The deep crustal structure of aseismic ridges, however, remains
poorly known despite a number of seismic refraction experiments (Figure 1).
Mantle-type velocities have only been identified beneath three aseismic
ridges, the Chagos-Laccadive Ridge, the Iceland-Faeroe Ridge and the
Nazca Ridge. Only one of these velocities (Nazca Ridge) was a reversed
determination. Deep refraction data are unavailable from many aseismic
ridges including the Walvis Ridge, the Rio Grande Rise and the Cocos and
Carnegie Ridges. Even where refraction data are available the results
show considerable variability, especially in shallow crustal structure
(Figure 1). Francis and Shor (1966) reported "Moho' beneath the Chagos-
Laccadive Ridge at depths of about 17 km. Similar mantle depths have
been reported beneath the Iceland-Faeroe Ridge (16-18 km) by Bott et al.
(1971) and the Nazca Ridge (16 km) by Cutler (1977). Since the depth to
""Moho" in normal oceanic crust is 9-11 km, these studies indicate crustal
thickening of ~8-10 km beneath aseismic ridges. However, Francis and
Raitt (1967) argued against crustal thickening beneath the Ninetyeast
Ridge. They interpreted their refraction data as indicating about the
same crustal thickness beneath the ridge as in the adjacent Wharton Basin
and suggested the Ninetyeast Ridge was a horst-type structure underlain
by low-velocity (7.1 km/sec) mantle material.

Because of the lack of reliable deep refraction data from many
aseismic ridges, most information on their deep crustal structure has been
inferred from gravity studies. Free-air gravity anomalies over aseismic
ridges are generally small in amplitude indicating that the ridges are in
approximate isostatic equilibrium. Bott et al. (1971) found, for example,

that the small free-air gravity high (~20 mgal) over the Iceland-faeroe
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Ridge could be best explained by an Airy-type thickening of the crust.
The amount of thickening deduced was about 8 km, in general agreement
with seismic refraction results. Goslin and Sibuet (1975) and Kogan
(in preparation) have interpreted gravity data over the Walvis Ridge
also in terms of a thickening of the crust. The main difference in
thege studies is the model of isostasy which is preferred. Goslin and
Sibuet (1975) found their gravity data could be best explained by an
Airy~type model of local compensation, while Kogan (in preparation)
preferred a regional compensation model for the ridge. The amount of
crustal thickening deduced was about 10-15 km for the Airy model and
about 7-10 km for the regional (flexural) case. However, Bowin (1973)
suggested a different compensation mechanism for the Ninetyeast Ridge.
He proposed a Pratt-type model of compensation in which the ridge is
supported by an emplacement of gabbro and serpentinized peridotite be-
neath normal crustal layers rather than by a thickening of the crust.
In his preferred model (Bowin, 1973; Figure 7), the thickness of the
layers of normal crust beneath the ridge is about the same (or slightly
less) than in the adjacent ocean basin and intermediate density material
(gabbro and serpentinized peridotite) extends to depths of about 25 km.

These previous seismic refraction and gravity studies suggest a
number of outstanding problems. They include: (1) the overall struc-
ture of aseismic ridges and whether or not the crust is thicker beneath
the ridges than in the adjacent ocean basins, (2) the state of isostasy
of the ridges and whether or not an Airy, Pratt or flexure model best
describes the manner in which the ridges are supported and (3) the origin

of the ridges and whether or not they formed near mid-ocean ridge crests.
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A useful approach to these problems can be made by using linear
transfer function techniques of analyzing gravity and bathymetry data,
gimilar to those previously used by Lewis and Dorman (1970), Dorman and
Lewis (1970) and McKenzie and Bowin (1976). These techniques e¢xamine
the relationship of gravity and bathymetry as a function of wavelength.
The resulting transfer function (or admittance) contains information on
the mechanism of isostasy. The advantage of these techniques is that
they use observational data and are not based on any particular model of
isostasy. The transfer function can, however, be interpreted in terms
of different isostatic models and may in some cases be used to distinguish
between them.

The purpose of this paper is to apply linear transfer function tech-
niques to the study of isostasy at aseismic ridges. One limitation of
many previous studies is that the transfer functions have been calculated
over rather broad regions comprising different tectonic provinces. There-
fore we have used a modification of the techniques previously described
by Dorman and Lewis (1970), Lewis and Dorman (1970) and McKenzie and
Bowin (1976) designed to study isostasy over a single two-dimensional
geological feature. This method, which has been presented by Watts (in
preparation), differs from these earlier techniques in that cross-spectral
rather than Wiener filtering techniques are used to compute the transfer
function and in that many profiles of gravity and bathymetry over the same
geological feature are used to obtain smooth spectral estimates. The
three main objectivés of this work are (1) to determine the transfer
function which describes the relationship between gravity and bathymetry

over aseismic ridges, (2) to interpret this transfer function in terms of
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various isostatic models and (3) to use the preferred model of isostasy

to provide new constraints on the origin of aseismic ridges.

DATA SOURCES AND ACCURACY

In this study we have used 26 gravity and bathymetry profiles across
two prominent aseismic ridges, the Walvis Ridge in the eastern South
Atlantic and the Ninetyeast Ridge in the Indian Ocean. These ridges
were chosen primarily because of the large amount of available gravity
data. Most of the data used in this study havenot been previously pub-
lished.

The ship's tracks along which these data were collected are shown in
Figures 2 and 4. The data sources and information on instruments and
navigation are presented in Table 1. The overall accuracy of the gravity
measurements depends on the type of instrument and navigation used. Generally
the accuracy is estimated to be 2 to 5 mgal for the Gss2 sea gravimeter
and the vibrating-string gravimeter when used with satellite navigation.
Somewhat larger errors are expected for those data collected using celestial
navigation. The gravity anomalies were reduced to the International Ref-
erence Ellipsoid (flattening = 1/297.0); however, the choice of a reference
ellipsoid is not important since the mean and trend were removed before

the data were Fourier transformed.

DATA DESCRIPTION

Ninetyeast Ridge

The Ninetyeast Ridge (Figure 2) is a remarkably linear, 5000 km long

aseismic ridge striking approximately NNE along the 90th meridian from
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FIGURE 2

Location of free-air gravity anomaly and bathymetry profiles
across the Ninetyeast Ridge used in this study. The thin lines
indicate the actual ship track while thick lines represent

the projected profiles. Magnetic anomalies (dots) and fracture
zones (long dashes) after Sclater and Fisher (1974), Sclater
and others (1976) and Pierce (1977). The bathymetry is based

on a map by Sclater and Fisher (1974).
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about 31°S until it is buried by the sediments of the Bengal Fan near
9°N. Sclater and Fisher (1974) found that the crust east of the ridge
becomes older to the south while the crust west of the ridge becomes
older to the north. The ages of the oldest sediments recovered at
DSDP sites on the ridge increase from Oligocene (22.5 to 37.5 m.y.) at
Site 254 (Davies, T. A., Luyendyk, B. P., et al., 1974) to Campanian
(71 to 82 m.y.) at Site 217 (von der Borch, C. C., Sclater, J. G.,
et al., 1974) indicating that the Ninetyeast Ridge also progressively
increases in age to the north. These ages are similar to oceanic crust
to the west, suggesting the Ninetyeast Ridge has always been part of
the Indian plate (Sclater and Fisher, 1974).

The 14 gravity and bathymetry profiles across the Ninetyeast Ridge
used in this study are shown in Figure 3. These profiles illustrate the
asymmetric, blocky nature of the Ninetyeast Ridge. It is typically
200~300 km wide and averages about 2 km shallower than the surrounding
sea floor. Sediment cover on the ridge is patchy with locally thick
accumulations of sediment; however, steeper slopes are almost sediment
free. A positive free-air gravity anomaly is associated with the ridge.
It is small in amplitude, generally not exceeding 75 mgal peak to peak,
indicating that the ridge is compensated at depth (Bowin, 1973).

Large, steep scarps are common on many profiles suggesting that block
faulting has contributed to the formation of ridge topography. Several
of these scarps have relief in excess of 2000 m. While the steepest,
largest scarps often occur on the eastern flank of the ridge (Profiles
90E-2, 90E-4, 90E-11, 90E-13, 90E-14, Figure 3), it is almost equally
common for the largest scarps to occur on the western ridge flank (Profiles

90E-1, 90E-3, 90E-8, 90E-10 and 90E-12, Figure 3). On some profiles there
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FIGURE 3

Projected free-air gravity anomaly and bathymetry profiles
across the Ninetyeast Ridge. Location of profiles shown in
Figure 2. Acoustic basement indicated by shading where seismic

reflection data are available.




NINETYEAST RIDGE

90E -1

Wi

_.___~¢h/‘\\\v______
LU4
90E-2
N ]
RC1402
90E-3 :
//H(\“\N J
CH100-6
90E-4 ]
S o0
A
CH100-6
90E-5

oM s ]

V3308

90E-6

>

)

CH100-6

90E-7

RC1402

90E-8

CHI00-6
90E-9 25 ¥
W ]0
-251
0
X
- 12-5 2
V290!
S0E-10 ]85 z
-zsrg
0
]2.5 é
: 50
V3305
0 300 600
L b 1 = (i 1S L J




45

is little or no indication of large scale faulting (Profiles 90E-5,
90E-6, Figure 3), an observation which led Bowin (1973) to suggest that

block faulting was only a secondary process in forming the ridge topography.

Walvis Ridge

The Walvis Ridge extends WSW some 2800 km from the South West African
continental margin to the Mid-Atlantic Ridge near Tristan da Cunha and
Gough Islands (Figure 4). The eastern part of the Walvis Ridge (east of
30E) has a continuous block-like structure with several distinct segments
trending at nearly right angles. Further west the ridge develops into
two branches, one trending N-S and the other trending NE-SW, both composed
of individual seamounts, guyots or short elongate ridges. The N-S trending
branch disappears near 3408; however, the other branch continues WSW to the
eastern flank of the Mid-Atlantic Ridge.

The location of the 12 gravity and bathymetry profiles from the
Walvis Ridge used in this study are shown in Figure 4. Profiles 1-5 cross
a 400 km long, continuous N-S trending segment of the eastern Walvis Ridge
located near 6°E. These profiles, shown in Figure 5, indicate this part
of the Walvis Ridge has an asymmetric blocky cross-section remarkably
similar to the Ninetyeast Ridge. It is typically 200-300 km wide with a
steep eastern flank and a gentler, sediment-covered western flank. Evi-
dence for large scale block faulting is common on many profiles. Like the
Ninetyeast Ridge, this part of the Walvis Ridge is associated with only
a small positive free-air gravity anomaly, generally not exceeding 75 mgal
in amplitude. This gravity high is flanked by smaller amplitude gravity
lows (¥25 mgal) which return to near zero values within 50 to 100 km of

the ridge axis.
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F1GURE 4

Location of free-air gravity anomaly and bathymetry profiles

across the Walvis Ridge used in this study. The thin lines
indicate the actual ship track while thick lines represent
projected profiles. Magnetic anomalies (dots) and fracture
zones (long dashes) after Ladd (1974) and Rabinowitz and
l.aBreque (in press). The bathymetry is based on a map by

Uchupi and Hays (1978).
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FIGURE 5

Projected free-air gravity anomaly and bathymetry profiles
across the Walvis Ridge. Location of profiles shown in Figure
4. Acoustic basement indicated by shading where seismic re-

flection data available.
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Profiles WAL-6 and WAL-7 (Figure 5) cross the central Walvis Ridge
near 27°S. The ridge in this area is similar in morphology to the ridge
farther east, although it is slightly deeper and more symmetric in
cross—-section. West of BOE the Walvis Ridge develops into two seamount
and guyot chains. The easterly branch is the more prominent with
rounded or elongate peaks often rising to depths of less than 1000 m
while the western branch is composed mostly of isolated seamounts and
guyots (Connary, 1972; Dingle and Simpson, 1976). Profiles WAL-8 to
WAL-12 all cross the western Walvis Ridge; however, most of the profiles
are located between 30° and 34°S near where the ridge bifurcates. One
striking feature of these crossings is the much higher amplitude free-
air gravity anomalies associated with the ridge in this area. These anom-
alies are generally 100-150 mgal peak to peak or about twice the typical

amplitude of anomalies over the eastern Walvis Ridge.

DATA ANALYSIS

The basic computational procedure involved in applying transfer
function techniques to these data has been discussed by McKenzie and
Bowin (1976) and Watts (in preparation) and will only be briefly summarized
here.

We wish to obtain a filter which when applied to an observed bathymetry
prolile converts it to a series which resembles the observed gravity.
The wavenumber (or frequency) domain representation of this filter is the
complex admittance Z(kn) defined simply as

G(kn)

ak) = B(K )

(1)
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where G(kn) and B(kn) are the discrete Fourier transforms of the gravity
and bathymetry and kn is the wavenumber (kn = 2m/A). 1In the presence of
noise a better estimate of the admittance is given (McKenzie and Bowin,
1976) by

Gk ) » B(k )*
n : n 2)
B(kn) B(kn)*

Z(kn) =

where * indicates the complex conjugate. In this case the admittance is
the cross spectrum of gravity and bathymetry divided by the power spectrum
of the bathymetry. In order to reduce the noise in this estimate of the
admittance some form of spectral smoothing is required. In this study the
smoothing has been accomplished by using many profiles over the same geo-
logical feature. Each profile represents an independent estimate of the
cross spectrum and power spectrum of gravity and bathymetry. These spectra
are summed and the resulting averaged spectra used to obtain a single
admittance function for the feature. This admittance is based completely
on the observed relationship between gravity and bathymetry and is not
tied to any particular isostatic model. However, it can easily be compared
with isostatic models based on different compensation mechanisms (McKenzie
and Bowin, 1976).

The Ninetyeast Ridge and the Walvis Ridge were treated as separate
data sets. Each gravity and bathymetry profile was projected normal to
the local trend of the ridge and interpolated at a 2.3 km interval. The
profiles extended 300 km on either side of the ridge axis; shorter profiles
were extended out to this length in order to be included in the study.
Both mean and trend were removed and a cosine bell taper applied to the

first and last 5% of each profile before the time series were Fourier
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transformed. These profiles were then used to calculate the complex ad-
mittance Z(kn) for each ridge using the spectral smoothing techniques
outlined above.

The calculated admittance functions (amplitude and phase) are plot-
ted against wavenumber in Figure 6 for the Ninetyeast Ridge and Figure 7
for the Walvis Ridge. Also plotted is the coherence Yz(kn). The coherence
is a measure of that portion of the observed gravity that cau be directly
attributed to the bathymetry. An estimate of the coherence is given (Munk
and Cartwright, 1966) by

1* = ((coh/E B I=13/(N-1) ()

where ¢ = C(kn) is the complex cross spectrum of gravity and bathymetry,
EG and EB are ine power spectra of gravity and bathymetry respectively
and N is the total number of profiles. The coherence is high (Y2>0.5)
for wavelengths longer than about 20 km reflecting the fact that a significant
portion of the energy in the observed gravity can be attributed to the
bathymetry.

The admittance phase, ¢(kn), is close to zero for A>20 km implying
that the admittance at these wavelengths is real. The relative smoothness
of the loglo adnittance curve for A>20 km is evidence that the same signal
was present in each profi’e and that the smoothing procedure satisfactorily
reduces noise. The loglo admittance curve peaks at wavelengths of about
100 km and decreases linearly to wavelengths of 10-20 km. This reflects
the increasing attenuation of the gravity signal from short wavelength
topography. The decrease in the amplitude of the admittance at long

wavelengths reflects the effects of isostatic compensation.




FIGURE 6

The coherence, loglO admittance amplitude, admittance phase,
and filter generated from the gravity and bathymetry profiles

shown in Figures 2 and 3 from the Ninetyeast Ridge.
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F1GURE 7

The coherence, Ioglo admittance amplitude, admittance phase,
and filter generated from the gravity and bathymetry profiles

shown in Figure 4 and 5 from the Walvis Ridge.
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Also shown in Figures 6 and 7 are the filters obtained by inverse
Fourier transforming the complex admittance. These filters can be con-
sidered as impulse response functions representing the gravity effect of
a line load. The negative side lobes, most obvious for the Walvis Ridge
filter (Figure 7), reflect the effects of isostatic compensation. The
extent to which these filters can reproduce the observed gravity anomalies
is shown in Figure 8 and 9. The "filtered topography'" profiles in these
figures were obtained by convolving the filter with the observed bathymetry.
The "predicted" and observed gravity anomalies generally compare well.

The mean variance between predicted and observed anomalies is '8.9 mgal
for the fourteen Ninetyeast Ridge profiles and *+9.6 mgal for the twelve
Walvis Ridge profiles.

The largest discrepancies between predicted and observed anomalies are
associated with locally thick sediment accumulations masking the true base-
ment relief on the ridge or in the adjacent ocean basins (for example,
90E-9 and WAL-5). The Ninetyeast Ridge filter is also unable to explain
completely the large amplitude free-air gravity anomalies associated with
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